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I Introduction

In this report we present the work performed in the period 'May 1990 April

1992 under contract AFOSR-90-0228: Mathematics: Numerical solution of

inverse problems in acoustics, Principal Investigators: Luciano Misici and

Francesco Zirilli.

In section 2 we present the work done in the contract, in section 3,4 and 5

three scientific papers that explain in detail the work discussed in section 2

are reproduced.
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2. Statement of the work accomplished

Let R3 be the three dimensional euclidean space, D C R3 be a bounded

simply connected domain that contains the origin with boundary 3D. Let

ui(x) be an "incoming" plane wave, that is:

U,(X) = eik(•-,-) (2.1)

where k > 0 is the wave number, a is a given unit vector and x = (x, y, z) E

R3 . Let u'(x) be the scattered acoustic field and u(_) be the total field that

is:
U(_) = &Cx) + u'(_) (2.2)

Let us consider the following "direct" problems:

Problem 2. 1- Find u defined in R' \ D such that

Au -- k 2u=0 in R 3 \D (2.3)

It=0 on 3D (2.4)

lim r ikus 0 (2.5)
r-• -, o J2.5I

where A= + a2+ a and r =(x 2 +Y 2 +Z

Problem 2.2- Find u defined in R 3 \ D such that

Au+k 2u=0 inR3\D (2.6)

au S= 
0 on O D (2.7)

lim r Cr[) - ziku] =0 (2.8)

4



where v is the outward normal vector to OD.

Problem 2.3- Find u defined in R3 \ D such that

LAu k+ u=0 inR 3 \D (2.9)

a~u
illU + P2- =0 on 9D (2.10)

lirm r 2.( O, iku.,l =0 (2.11)

where yj and t12 are given constants.

Problem 2.1 and in particular the Dirichlet boundary condition (2.4)

corresponds to the study of acoustically soft obstacles, Problem 2.2 and

in particular the Neumann boundary condition (2.7) corresponds to the

study of acoustically hard obstacles, finally Problem 2.3 and in particular

the mixed boundary condition (2.10) correspomds to the study of obstacles

characterized by an acoustic impedance. Moreover we have:

() eikr 1
- F(i, k, a) + O(-1) ; r --- oo (2.12)
r r2

where i - Ell and F(i, k,_a) is the far field pattern associated to u-(1)

generated by u'(1). Let A,,, n = 1.2, ... be the eigenvalues of the Helmholtz

equation (2.3) considered in D with the appropriate boundary conditions.

Let B = {_ E R3 I I.-zjI < l} and OB = E I = 1}, we will consider

the following inverse problems:

Problem 2.4- Given k > 0, -k 2 :A A, n = 1,2,... and Q 1, CQ 2gB from

the knowledge of the far field patterns F(1, k,_a) of problem 2.1 (Dirichlet

boundary value problem) for a E Q , _ E Q22 find the boundary of D, OD.

Problem 2.5- Is analogous to Problem 2.4 when Problem 2.2 that is the

Neumann boundary condition is considered instead of Problem 2.1.

5
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Problem 2.6- Is analogous to Problem 2.4 when Problem 2.3 that is the

mixed boudary condition is considered instead of Problem 2.1.

The inverse Problems 2.4,2.5,2.6 have been considered with special attention

to the resonance region case, that is the case when

kL _1

where L is a characteristic lenght of the obstacle.

In the research reported here we have considered two types of obstacles:

(1) obstacles with smooth boundary 9D. For this class of obstacles have

developed a numerical method to solve the inverse Problems 2.4,2.5,2.6

(see the references reported in sections 3,4,5 of this report). The

numerical method developed generalizes the method introduced by

Colton and Monk and uses the Herglotz function technique.

(2) obstacles with Lipschitz continuous boundary. For this class of obstacles

we have studied [1] the direct Problems 2.1,2.2,2.3. The existence and

uniqueness of the solution of problems 2.1,2.2,3.3 has been established.

In order to compute the far field patterns generated by these non

smooth boudaries we have generalized the method suggested by Milder

in [2). However up to now, due to the difficulties encountered in

computing the far field data, we have not been able to work out a

satisfactory method to solve the inverse Problems 2.4,2.5,2.6 when non

smooth boundaries are considered.

References

(1 A. Vecchio, F. Zirilli, in preparation.

[2] D.M. Milder: An improved formalism for wave scattering from rough

surfaces, J. Acoust. Soc. Am., 89, 1991, 529-541.
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3 APPENDIX 1

L. Misici, F. Zirilli: "An inverse problem for the three dimensional

Helmholtz equation with Neumann or mixed boundary conditions: a

numerical method", in Mathematical and numerical aspects of wave

propagation phenomena, G. Cohen, L. Halpern, P. Joly Editors, SIAM

Proceedings Series, Philadelphia, (1991), 497-508.
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CHAPTER 50

An Inverse Problem for the Three Dimensional
Helmholtz Equation with Neumann or Mixed

Boundary Conditions: A Numerical Method*

Luciano Misicit

Francesco Zirillit

Abstract. A numerical algorithm for a three dimensional inverse acoustic scattering
problem is considered. From the knowledge of several far field patterns of the Helmholtz

equation a closed surface aD representing the boundary of an unknown obstacle D is
reconstructed. The obstacle D is supposed to be hard (i.e. Neumann boundary condition)
or characterized by an acoustic impedance (i.e. mixed boundary condition).

1. Introduction

Let R" be the three dimensional euclidean space, z = (Y, y, z) E R' be a generic vector,
(.,.) will denote the euclidean scalar product and 11.11 the euclidean norm. Let D C R 3

be a bounded simply connected domain with smooth boundary 8D that contains the
origin. Let u'(z) be an incoming acoustic plane wave, that is:

where k > 0 is the wave number and !a E R' is a fixed unit vector. Let us denote with
u' (;) the acoustic field scattered by the obstacle D and with u(.) the total acoustic field,
that is:

u(:) = u(.) + U(_) (1.2)

The total acoustic field u(Z) 3aUSIeCs the Helmholtz equation:

* u + k 7 u =0 in R 3 \ D 1

and the scattered acoustic field u',(z) satisfies the Sommerfeld radiation condition at

infinity, that is:

I- iku} = I .1..I)

*The research reported in this paper himi been made possible throuiCt the support and sponsorship

of the United States Government throijh the Air Force Offiee of Scientific Iles-areh under contract so

AFOSR . 200.0228 with the Universit& di Carnerino

tDipartimento di Matematica e Fisica UnIversitk dl Camerio- .2032 Camerino (WC)- Italy

01lpartimento di Matematica 'G. C&stelnuovo" Universitk di Roma "L& SipiteOL, -00186 Roma-

Italy
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498 Misici and Ziriili

where A = + + - is the laplacian and r =111 (=2 -y h Moreover the

total acoustic field u(_) satisfies a boundary condition on (ID. This boundary condition

can be formulated in several different ways, depending on the nature of the obstacle D.
In [11,121 we have considered the acoustically soft obstacles [31 that are characterized by

the Dirichlet boundary condition:

u = 0 on oD(.)

In this paper we restrict our attention to the acoustically hard obstacles [31 characterized
by the Neumann boundary condition

S= 0 on aD (1.6)

where v is the unit normal on aD, and to the obstacles characterized by an acoustic

impedance X [31 that satisfy the mixed boundary condition

au
u + x- = 0 on 3D (1.7)

We assume that X is a given constant. We consider two boundary value problems: the

V'eumann boundary value problem given by (1.3),II.4),(1.6) and the mixed boundary
value problem given by (1.3),(1.4),(1.7). In [4] it is shown that the scattered field u'(Z)

of the Neumann and mixed boundary value problem has the following expansion

u (_z) = F.(-,ka);+o) ( when r -- o1

where: z j0 and F.(A7, k,-) is the far field pattern generated by the incoming

wave (1.1) that hits the obstacle D.

In this paper we introduce a numerical method for an inverse problem for the three

dimensional Helmholtz equation, that is from the knowledge of the nature of the obstacle
i.e. the boundary condition on 3 D satisfied by u(;) and from the far fields Fo generated
by several incoming waves we want to recover the shape of the obstacle 8D.
The inverse acoustic scattering problem have received a ]ot of attention in the scientific
and technical literature, here we wiil refer only to the work of Colton and Monk [51,161,[71
since the work presented in this paper has beeen inspired by I7f. To be more precise
let A, , n = 1,2 ... be the eigeanvilues of the Helmhoitz equation in the interior of D,

with Neumann boundary condition (- 6) or with the mixed boundary condition (1.7); let
B = (A E R' I _1=11 < 1), and 33 •e the boundary of B. We will consider the following
inverse problem:

Problem 1 .1 Let us assume that ,%i'z) satisfies the Neumann boundary condition (1.6) or
the mixed boundary condition ', .7). Let f71 g 8B , fl2 c {C E R 1 • > 0) be two given
sets such that A, -Z f01 i = 1, 2... From the knowledge of Fo(•,k,a), for o E fl, , k E 112

determine the boundary of the obstacle aD.

We note that the condition A, 4 V a = 1,2... is a non-resonance condition, that fl1 is

the set of the directions of the incoming waves and that the far field F. is observed for

"zE aB.
In this paper we present a numerical method to solve Problem 1.1, in particular in section
2 we derive the mathematical relations needed to develop cur method, in section 3 we

present our numerical method, finally in section 4 some numerical experience is shown.

I¢



0 '1ELrMHCOL7Z EQUATION WITH NEUMAN:; CONDITIONS .199

2. The mathematical formulation of the Inverse problem

For y, E Rt3 let

( _= - I) = - Yi(2.)

be the Green's function of the Helmholtz operator with the Sommerfeld radiation condi-
tion at infinity. It is easy to see 'hat:

Y11- ) = _ _ 1o( 1 d ) w hen il- - oo (2.2)

moreover from the Helmholtz formula [81 we have:

f (,(y) (D u Y )do(y) u -'Cz) i -f D (2.3)47 a ) , (_ u' (.1) if _r E R'. \ D

where da(y) is the surface measure on 3D.
Substituting (2.2) in (2.3) and using (1.8) we have:

F.ae-',!' f ( k(&y Y))da(y) (2.4)
F o , _ ) = j ( ,( _1 a_ •-7 r-(y ) - ) ,(Y )

Let g(j) E L2 (aB, da) where LI_. 3, da) is the space of square integrable functions withrespect to the measure da and g(_•) is the complex conjugate of" g(i)-For every g(i) E L'(aB, da) from (2.4) interchanging the integrals we have:

JBF,(;/k, )g d - I ( -, da() ]M) ac (y) -,-( d

J at(ky) au(y) (

4, (2.5)
where

V (k) = B () (ii)e ID do.7~ (2.6)

It is easy to see that u(ky) sati.sfies the Helmholtz equation for y E R', moreover v(ky)
is the Herglotz wave function corresponding to the Herglotz kernel 9(i). Since the total
acoustic field u satisfies the boundary condition (1.6) or (1.7) on the surface 9D formula
(2.5) redures to:

(0 ) L F . ( , k , ) d a (i_)=) -L u - ") au( kY)) (2 .7 )

when the Neumann boundary condition (1.6) is satisfied, or to

(;t) / F0( _k, _)g(-)d,,( ) = -L a ,(- ) [x - + ll"(ky)d• (y) (2.3)
JOB4x fD 8

.(9 ) a V( Y)

when the mixed boundary condition (1.7) is satisfied.
We restrict our attention to the Neumann Herglotz domains, that is domains such that

unique solution u of.
(+ 0) v=0 z:ED (2.9)

.~ ~ _ _ .... ....
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a • = = ( aD (2.10)

is given by (2.6) for a suitable choice gj(_-, H k) of g(•), or to the mixed Herglotz domains,

that is domains such that the unique solution v oa

(A + O)v = 0 C-- (2.1D)

a• a _-_______d

(x- +0)- = (X - + , l ) az: (2.12)

is given by (2.6) for a suitable choice g'(4-,k) of g(_f).
We note that in the definition of Herglotz domains we have exploited the hypotesis

2 • , 1,2, ... A simple computation shows that the sphere is an Herglotz

domain that is the class of the Herglotz domains is not empty. In (2.7),(2.8) let v be the
Herglotz wave function associated to gy(.j,k), using (2.10),(2.12) respectively and the

Helmholtz formula (2.3) we have

fa ,( (2.13)

when gH(i,k) is the Herglot- kernel, formula (2.13) holds VY, a. Problem 1.1 proposed
in section I will be solved in three steps:

(i) from tE. knowledge of some far fields F. using (2.13) determine the Herglotz kernel
g9M(j,k) of the domain D

(ii) from qm(4,k) using (2.6) find the corresponding Herglotz wave function v
(iii) determine aD using (2.10) (Neumann boundary condition) or (2.12) (mixed boun-

dary condition).

3. The numerical method

Given D C R3 and the boundary conditions (1.6) or (1.7) satisfied by u on aD, let
n, = {(. E aB i = 1,2,.-.,N) be the set of directions of the incoming waves and
n 2 = (k{ > 0 I = 1,2," ', M) be the set of wave numbers of the incoming waves. The

data of our problem are the measurements of the far fields F,,(., ky,a,) •. -5 aB ; j =

1,2,..., M ; t = 1,2,-., N. In the numerical experience shown in section 4 the data are

obtained by solving numerically the "direct" problems (1.3),(1.4),(1.6) or (1.3),(1.4),(1.7).

Let (8, 0) be the polar angles so that

'(9,0) = (sin Ocos •,sin0 sin q, coaG) (3.1)

and
U,,(') = 7imPi'(cos) cosm¢ , V1, (i) = -71, 'P" (cos 6) sin mr

be the spherical harmonics that is Pf are the Legendre polinomials, P,- is the me'
derivative of PI and 71, are the normalization factors in L2(aB,do,). .rom these data
our computation proceeds in four steps:

s•tp 1. For each j compute the Fourier coefficients of F.(,,k, , i = 1,2,..-,N.

Given L,... >- 0 we assume that the far field F,,(_,k,,a,) can be approximated by a
truncated Fourier series, that is:

L .. I L..4 , IF.(i j,2) : :F,, IU, +E' , (3.2)
1=0 M=0 1=1 M%=I

11



3D HELMHOLTZ EQUATION WITH NEUMANN CONDITIONS 501

"The Fourier coefficients {F,, , Ft,,} )are determined computing the following integrals:

F,?' f 0,, l= , , L,,,maz m=0, 1,..,1 (3.3)
oB

,=, = F0(i,ky,,j•),,.(ijda_•) ,tI= 1,: . ii.. ,r= 1,,..,I (3.4)
2 F. ;, , ... , V d

Step 2. From the coefficients of FI(', k,,,) = 1,2.N to the Hergiot: kernels

gg(H,k 2 ) ,= 1,2,...,M, of the domain D.

Let gq( .,kj) C L.2(3B,rda) be the Hergiot: kernel a.&.sociated to the domain D when we

use the wave number ki E fn2 . We assume for gj-(-,,k.) the expression of a truncated

Fourier expansion, that is

L, t L, I

g-(•, k2 )= Z7 Z g', m -, + 99 Z ,,.V,) (3.5)
1On=0 "%=O

where 0 < < L,,,,. From (2.13) using the orthogonality properties of the spherical

harmonic- we have:

L ,,, 1 ,,,, + 'M' Z f g m2 , -1 , = 1,2, ... , ; = 1,2,...,,M (3.6)
1=0 Mn=O 1=1 rM=1

So that for each j the Fourier coefficients are determined solving (3.6). For

fixed the linear system (3.6) has (L"+l(L + unknowns, that is in order to

determine w we need X incoming waves with N > 2t.-÷)(, L.

If the obstacle D has some symmetry such as cylindrical symmetry around the z-axis

and/or symmetry with respect to the equator then a similar symmetry can be assumed

on g•(j,k;). This assumption reduces substantially the number of unknowns in (3.6)

and as a consequence the number N of incoming waves needed to recover the desired

approximation of 9H(_,k,) [2!.

Step 3. From the Herglotz kernels gt(j ,k,) to the Herglotz wave functions v2 (k,-Y).

From (2.6) and (3.5) we have:

,,i( 4,r) Z47 rji(,,lyjl)Um(i) + L L g• ••'J,(kjllYl)V,(j) (3.7)
=0 M=O 1= I rt=l

where • = and J(.) is the spherical Bessel function of order 1.

Step 4. From the Herglotz wave functions v,(ky) ,j = 1,2..., M to the boundary of

the obstacle aD.
Let (r, 0,#) be the polar variables we assume that exist 0 < a < b < oo and a function

f(9, ) with a < f < b such that aD = (r = f(0, ) I 0 <_ e < 0 < < 2r)}. We
approximate f(8, 0) with a truncated Fourier series, that is:

1.. I L, I

,l= Z Z C,. ,m(i) + n Z U,,,Vm(A) (3.8)
1=0 mn=0

where L,ý _ 0 is chosen depending on ZID i.e. simple obstacles can be reconstructed with

L, = 4,6. Moreover if 8D has some symmetries these can be trnslated in properties

12



502 Misici and Zirilli

of the coefficients (cI,,.l,c., 2 ). Let c = (cml,C•,2} 0 < I < LP , 0 < m < I be an
(L, +12 L,*Il + L.IL.(L dimensional vector. The unknown boundary aD is obtained

rrinimizing with respect to c

M' Ia e- if 2
-(d•J = E do f (i, + I-f sinod9 (3.9)

when the Neumann boundary condition (1.6) is considered, or

3(_2) = I f dA f 1 (x' + 1)(uj + - - sin 9de (3.10)

when the mixed boundary condition (1.7) is considered.
In (3.9),(3.10) the Herglotz wave function ui are computed in (r f (8, 0), #, 0) and il is
the unit exterior normal to the surface r = f(9, 0) and f is given by (3.8). The integrals
in (3.9),(3.10) are approximated with some elementary quadrature formula. The weights
-L are introduced in order to make the different terrms in the sums over j of the same

order of magnitude. When the minimization of the functions I,(c) , i = 1,2 does not
give a satisfactory reconstruction of aD we minimize

P,(_•) = 1,(g) + w,(g) ,= 2, (3.11)

where w(g) is a penalization term.
For a large class of surfaces dD including the ones with cylindrical symmetry with respect
to the z-axis we have 1L = j- = 0 at e = 0 (North pole) and 8= x (South pole), moreover

if 8D is also symmetric with respect to the equator we have ! 2 L- 0 at 9 (the
Equator).
When ! = !- = 0 the relations

do aa
• ( ;+ 0) = (3.1.-)

and

(X7-- + 1)(U- + = 0 (3.13)

become nonlinear equations in the unknown f that can be solved, for -xample, using
the bisection method. In thi- ."ay we can obtain f ý,f ,f estimates of f(8,#) when

0 = o 2,o93 with 81 = 0,0- = =, 9 M. The penalization term w(g) is given by:

w(_) = UP(9i-,,) - f(.14)

where f(6,0) is given by (3.8) and p; _ 0 ,i = 1,2,3 are weight factors. The mini-
mization of the functions I(.(c) or P,(c) , i= 1,2 is performed with a stochastic global
minimization algorithm introduced in P9!,1101.

4. The numerical experience

In our numerical experience we chosen in (1.7) the acoustic impedance X = 1. The
surfaces 3D considered are the following ones:

13



30 .ZLMHOLTZ EQUATION WITH NEUMANN CONDITIONS 503

1- Oblate Ellipsoid (2Z), + (Q,)3 + Z2 = 1 (4.1)

2- Prolate Ellipsoid xi + y3 + (3z) 2 = 1 (4.2)
3- Short Cylinder M(fz)2 +(2y)2 )6 +3 z 0 - 1 (4.3)
4- Long Cylinder (zi + V2 ) + (}z)1 0 = 2 (4.4)

5- Vogel's Peanut r = 2 (c052 a + } sin. 9)1/2 (4.5)

6- Pseudo Apollo r = + 2cos 30)'/7 (4.6)
All these surfaces are cylindrically symmetric with respect to the z-axis and the surfaces
1,2,3,4,5 are also symmetric with respect to the equator. These symmetries are always
exploited to reduce the number of Fourier coefficients in the expansions of the Herglotz
kernels and of the surfaces f(0, 0).
We observe that the obstacles D corresponding to 1,2,3,4 are convex and the ones corre-
sponding to 5,6 are not convex. Finally a characteristic length L of the obstacles can be
chosen equal 1. The set of the directions of the incoming waves is:

,=; = ((9,) - O,,...,N) (4.7)

with
N = Lmaz + 1 (4.8)

The set fl2 is a subset of the set (2, 3) and Lv = L,,.. We observe that with this choice
of n2 the product kjL is of order one, that is we are working in the resonance region.
For j = O, 1,...,36 let 0i = i , f(8i,O) be the exact value of the surface given by
(4.1),...,(4.6) and f,(6,, 0) be the value reconstructed performing the numerical procedure
described in section 3. The relative L2 error in the points {1j i j = 0, 1,...,36}, that is

E L I = o ( J ( ~ o ) ~ : (9 o)) 2 ] 1/2
EL 0 (f (P', °) -y(9i,0)] /

= ~36EL, [ TE,=0 f2 (0,) (s

is used a a performance index.
The results obtained are shown in Table 4.1, Table 4.2, Fig. 4.1a, 4.1b, 4.1c, Fig. 4.2a,
4.2b, 4.2c and Fig. 4.3a, 4.3b, 4.3c.

Table 4.1 Ileumann problem _

L ~ ~ Penalization ter~
Object NReconstructiarJL.L kdl'Jorth PoalEquatoj EL,

Oblate Ellipsoid I 1 I 4 12in_ yes yes p.0041•
"0 2 3 1412131 no no P.00411

Prolate Ellipsoid 3 3 4 12 _ i yes yes p.0046E
4 3 4 1213 no no p.00371

Short Cylinder 5 3 562 1h yes yes 10.0476
""6 _3 i51213 no no 10.0361

Long Cylinder 7 3 8 16 2hb• yes yes 10.0551
"a - 1 8 I 8 16121,3 no no 10.0785

Vogel's Peanut 9 i8 14 12 no yes yes 0.0299
"A 10 L8 1412l1l no no 10.0225

Pseudo Apollo 11 8 4 12 ýd yes yes failure
" 12 1 8 412131 no no [failure
"13 1 8 1412131 yes no (0.035L3

14



504 Misici and Zirilli

Table 4.2 Problem with mixed bou.ndary condition

f Penalization term

Object Reconstruction L,,, L k orth PoleEquato, EL'
Oblate Ellipsoid 1 8 14 ,c yes yes 0.0102

""2 8 142131 no no p.00484
Prolate Ellipsoid 3 8 4 21 yes yes 0.0139

""4 28 31 no no 0.0232
Short Cylinder 5 68 62 yes yes 0.0399

"6 8 6 2131 no no 0.0568
Long Cylinder 7 8 6 2 yes yes 0.0424

8 86231 no no 0.0293
Vogel's Peanut 9 8 4 2 J yes yes 0.0448

10 8 34 2131 no no 0.0495
Pseudo Apollo 11 8 4 2n yes yes failure

12 8 42I31 no no failure

13 842 31 yes no 0.0356

Fig. 4.1a Original Fig. 4.1b Reconstruction Fig 4.1c Reconstruction
Long Cylinder n* 8 of table 4.1 n* 8 of table 4.2

Fig. 4.2a Original Fig. 4.2b Reconstruction Fig 4.2c Reconstruction
Vogel's Peanut n* 10 of table 4.1 n* 10 of table 4.2
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Fig. 4.3a Original Fig. 4.3b Reconstruction Fig 4.3c Reconstruction
Pseudo Apollo n* 13 of table 4.1 no 13 of table 4.2

The reconstruction procedure adopted here based on the minimization of the functions
i or Pi , i = 1,2 is more robust than the reconstruction procedure adopted in 111,[21
that integrates numerically an initial value problem for an ordinary differential equation.
However the global minimization of the functions 1i or Pi , i = 1,2 using a stochastic
algorithm is computationally much more expansive than the solution or an initial value
problem. The reconstruction technique suggested in this paper can be adapted to the
problem with Dirichlet boundary condition with very satisfactory results.
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1- Introduction

Let R 3 be the three dimensional euclidean space, X = (X, y, z)T E R.3 be a generic vector and the

superscript T denotes the transpose operation. The euclidean scalar product will be denoted with

(., .) and 1]. I[ will denote the euclidean norm.

Let D C R 3 be a bounded simply connected domain with smooth boundary OD, in the following,

without loss of generality, we assume that D contains the origin. Let u'(.) be an incoming acoustic

plane wave, that is:

u'(x) = eik('a) (1.1)

where k > 0 is the wave number and a E R3 is a fixed unit vector (i.e. 11211 = 1). Let us denote

with u'(x) the acoustic field scattered by the obstacle D and with u(.) the total acoustic field,

that is:

u(-) = u'(-K) + u'(4) (1.2)

The total acoustic field u(g) satisfies the Helmholtz equation:

LŽý.u(_K) + k 2 u(_) = 0 x E R 3 \ D (1.3)

where L = a 2 /OX 2 + a 2 /Oy 2 + O2 /Oz 2 is the Laplace operator. The scattered field u-(j) satisfies

the Sommerfeld radiation condition at infinity

li_. - iku 5 } = 0 (1.4)

where r = [[xfj. Moreover the total acoustic field u(.) satisfies a boundary condition on oD. This

boundary condition is the mathematical counterpart of the physical character of the obstacle, that

is: for acoustically soft obstacles we require the Dirichlet boundary condition:

U(1) = 0 1EaD (1.5)

for acoustically hard obstacles we require the Neumann boundary condition:

S=0 E OD (1.6)On

where n(_), 1 E OD is the unit outward normal to OD at the point x, and finally for obstacles

characterized by an acoustic impedance we require the mixed boundary condition:

a~u(z)
u(_)+ +. = 0 1 E OD (1.7)

On
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We assume X to be a real constant to derive the relations of section 3, however this assumption

can be avoided.

We call direct problem the problem of determining the scattered field u"(1), Z E R3 \ D given

the incoming field u'(__) the obstacle D and its physical character, that is given one of the three

boundary conditions (1.5),(1.6),(1.7). The direct problem is a boundary value problem for the

Helmholtz equation, and has been widely studied. For an exposition of several mathematical results

on the direct problem see for example [1]. In particular it can be shown [1] that the scattered field

uS(Z) corresponding to the boundary condition (1.5), (1.6) or (1.7) has the following expansion:

us(4) = eikrFo(1, k, a) + 0(1) r -. oo (1.8)
r 7

so that when r -- oo the leading term of the expansion in inverse powers of r is given by a

spherical wave eikr/r coming out from the origin modulated by the "far field" F0 . We note that F0

depends on k,_a that are the parameters characterizing the incoming wave (1.1) and on i -

for x 5 0. We note that the Helmholtz equation (1.3) is obtained from the wave equation assuming

that the incoming field and the corresponding scattered field are time harmonic, that is their time

dependence is given by a factor eiwt where L is a constant.

The inverse problem that we consider here is the following: given the character of the obstacle (i.e.

acoustically soft, hard, or characterized by an acoustic impedance) and the far field Fo(_, k,_2 ) for

one or several incoming waves u'(x) with different incident directions a and/or wave number k

determine the boundary of the obstacle OD. This inverse problem is known to be ill posed and due

to its great interest both in mathematics and in several application fields has been widely studied,

for a review see [2].

The numerical methods used to solve the inverse problem considered here can be divided in two

types: the first type consists of an iterative procedure that at each step requires the numerical

solution of a direct problem, the second type consists of genuine methods for the inverse problem

that do not require the solution of the direct problem. In the first type we mention the work of

Roger [31, Murch, Tan and Wall [4], Wang and Chen [5], Angell, Colton and Kirsch [6], Kristensson

and Vogel [7]. In the second type we mention the work of Kirsch and Kress [8], [9], [10] and the

work of Colton and Monk [11].

In this paper we introduce a numerical method to solve this inverse problem based on the Herglotz

wave function method introduced by Colton and Monk in [11] and further developed by the authors

in [12], [13], [14], [151. In particular, based on previous work by the authors [14], we extend the
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Herglotz function method introduced in [11] for acoustically soft obstacles to hard obstacles or

obstacles characterized by an acoustic impedance. The analytical relations obtained are exploited

to built up numerical algorithms. Finally these algorithms are efficient in the so called resonance

region, that is when

kL = 0(1) (1.9)

where L is a characteristic length of the obstacle D. In section 2 we derive the analytical relations

that are the basis of the numerical methods. In section 3 the basic numerical method developed

for the solution of the inverse problem is presented. In section 4 some special features of the

reconstruction procedure in the case of acoustically soft obstacles are shown. Finally in section

5 we introduce the test problems used to test. the methods of sections 3 and 4 and we show the

numerical results obtained.

2- The mathematical formulation of the inverse problem

For x, y E R 3 let

eik 1•.-I(.

(_,_)-- 4 r _yl2
be the Green's function of the Helmholtz operator that satisfies the Sommerfeld radiation condition

at infinity. It is easy to see that:
eikIl-I 1y) = 4,-1[[z[ e- k(.xy) + O( ) when x - oo (2.2)

moreover from the Helmholtz formula [14] we have:

f [r y)" -P,,y49u(1)] -u'(z) if _ E D
D L- an(y) ,__' a •(_)J :. u()- u ifxeR3 \D (2.3)

where da(y) is the surface measure on 9D. Substituting (2.2) in (2.3) and using (1.8) we have:

Fo(Q,k,a_) = I Y) n an(y2) ike-)- da(y) (2.4)

Let B = E R'3 I II- < 1}, 9B be the boundary of B and dA be the surface measure on &B,

we denote with L2((9B, dA) the space of square integrable complex functions with respect to the

measure dA. For g(1) E L2'(OB, dA) and (2.4) interchanging the integrals we have:

Fo-lkQ)(.A)= -1f g()AVi)~ f uy -(~k) "u(y)e -ik( -,i,)] da(y)
J B fa JB anay L y)

=1 F-) .)v(y) )u(y)7_-l da•,)
4r l0aD [ N(y)-.) - @n(y) v~JdTy

(2.5)
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where

v(Y) = j g( 11)e"-dA(Q) (2.6)

It is easy to see differentiating under the integral sign that v(V-) is a solution of the Helmholtz

equation for every y E Rp3 .

Let E, E2, E be the sets of the eigenvalues of the Laplace operator inside the domain D with the

Dirichlet boundary condition (1.5), the Neumann boundary condition (1.6) or the mixed boundary

condition (1.7) respectively. We give the following definitions:

Definition 2.1 Given -k 2  E l, let w1(y) be the unique solution of the following boundary value

problem:

(A + k2)wl(y) = 0 y E D (2.7)

e-ikIlyII

Wk(i) = lll- I E 9D (2.8)

We say that D is an Herglotz domain with respect to the Dirichlet boundary condition if there

exists g9(i) E L 2(OB, dA) such that

w 1 (y) = j gi(-)eik(--)dA(-Q) (2.9)

In a similar way we define:

Definition 2.2 Given -k 2 ý E,,, let wii(y) be the unique solution of the following boundary value

problem:

(A + k2 )w.(y) = 0 Y E D (2.10)

aw.2(y) _ etk"_"

dn(y) = an(y) k-II 2- E OD (2.11)

We say that D is an Herglotz domain with respect to the Neumann boundary condition if there

exists g2(_) E L2 (OB,dA) such that

W2 Y)= g2()ezk( -'Y)dA(i) (2.12)

Definition 2.3 Given X E R and -kV ý S3, let w3 (2) be the unique solution of the following

boundary value problem:

(tn + k2 )w3(Y) 0 Y E D (2.13)
19W3(Y) O k/ -kL" lvI

W3(y) +Xd, = -(1 + X -) y E•OD (2.14)
22n(y) kIjyJ
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We say that D is an Herglotz domain with respect to the mixed boundary condition if there exists

g (1) E L2(f 3,dA) such that

W3(Y) = fa jg 3(i)e kQy) (2.15)

To our knowledge it is not known a characterization of the Herglotz domains, however it is easy to

see that the class of Herglotz domains is not empty. In fact a straightforward computation shows

that the sphere of center the origin is an Herglotz domain in the sense of Definition 2.1, 2.2, 2.3,

moreover the numerical experience of section 5 can be regarded as experimental evidence that the

domains considered satisfy the previous definitions.

Since now on we consider only domanw D that satisfy the appropriate Herglotz condition that is

Definition 2.1 or 2.2 or 2.3. In the case of the inverse problem for the acoustically soft obstacle

from (2.5) using (1.5) and (2.9) we have:

Bo 1(.i, k,Q)giL()dA V a E OB (2.16)

Reasoning in the same way we have:

lB Fo(_, k, a)g2('i)dA(!) = V a E aB (2.17)

for the acoustically hard obstacle and

FL F7) .k,0)g3(.i)dA(i) = 91 ct E OB '2.18)fa B k-

for the obstacle characterized by an acoustic impedance.

The numerical method for the inverse problem for the acoustically soft obstacle is based on the

relations (2.16), (2.9), (2.8) that connect the data that is the far fields to the unknown OD. In a

similar way we will exploit (2.17), (2.12), (2.11) to solve the inverse problem for the acoustically

hard obstacle and (2.18), (2.15), (2.14) to solve the inverse problem for the obstacle characterized

by an acoustic impedance.

3- The numerical method

Given D C R 3 and the boundary condition (1.5) or\1.6) or (1.7) satisfied by u on aD we will exploit

numerically the analytic relations derived in section 2 as follows. Since most of the content of this

section is independent of the boundary conditions chosen, in order to fix the ideas, we consider



the inverse problem for acoustically soft obstacles that is the relations '2.16), (2.9), (2.3), when

necessary we will comment on the peculiar features of the corresponding problems for acoustically

hard obstacles or obstacles characterized by an acoustic impedance. Cur general strategy car. be

summarized in three points:

(i) use (2.16) to go from the knowledge of the fa. ' 'ds FO to the Herglotz kernel gy(.) of the

domain D

(ii) use (2.9) to go from the knowledge of the fierglotz kernel gj(.i) to the Herglotz wave function

w1(y)

(iii) use (2.8) to go from the knowledge of the Herglotz wave function wl(y) to the boundary of

the obstacle OD

Xvlore precisely given D, let Q, = {r E i9B I 1 1,2, -. ,N} be the set of directions of the incoming

waves, Q2 = {ki e R. - , i = 1,2, ,N 1} be the set of the non-resonant wave numbers

of the incoming waves and Q3 = { E aB I i = 1, 2,.- -, M} be the set of directions where the far

fields F0 are measured. For i = 1, 2, 3 we assume that the elements of f2, are distinct. The data of

our inverse problems will be the numbers Fji•j, i = 1,2,.--,N, il = 1,2,---,N 1, j = 1,2,---,M

that represent the measurements of Fo(I±, ki,_ai). In the numerical experience shown in section 5

these data are obtained solving numerically the direct problem (1.3), (1.4), (1.5).

Let (0, 0) be the polar angles so that

._ = H_(0, o) = (sin0cos , sin0sin4, cos0)T (3.1)

and U1m(,i) =7mP(cos9)cos mo. V1m,(._) = 7-1,P,-(cosO)sinmO, l = 0, 1,2,..- , m = 0, 1,-.-,1

be the spherical harmonics, whpr! -:, are the normalization factors in L2 (OB, dA) and P,' are the

Legendre functions. It is well known that {Um,,V,,,} '=.1... is jn orthonormal complete set of

L2- (cB, d)

From the data our computation proceeds as follows:

Step 1. From the data to the coefficients of the expansion in spherical harmonics of the far field

Fo(i:,kil,..2,) , 1 = 1,2,. .. ,N 1  , i = 1,2,. .,N.

Let us first consider the case = I i = 1,2,..., M}. Given an integer L,,m. >_ 0 we assume that

the far field Fo(±i,kj,2j) can be approximated by a truncated expansion in spherical harmonics,

that is:

F E Fj Uim f) + E -F".''V.. (3.2)
1-=0 m= 1=1 m=
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we note that the unknown coefficients appearing in the truncated expansion (3.2) are (Lma, + 1)2

complex constants. To determine these coefficients we impose that

L,,mos I L., 4•. I

Z Z FoAinUlm(-ij) + Z Z Fo"'.imrj) i . , j = 1,2,''',.. ! (3.3)
1=0 m=O 1=1 r=1

The equations (3.3) are a linear system of M equations in (Lma, + 1)2 unknowns, so that in order

to determine the unknowns we need M > (Lm, + 1)2. The condition number of the linear system

(3.3) grows dramatically with the number of equations M, so that its numerical solution become

practically unfeasible even for small values of Lmax such as Lmaz = 4, 6, 8.

The use of regularization procedures such as Tichonov regularization to solve (3.3) are helpful but

insufficient to cure the ill conditioning. We note that the right hand side of (3.3) is supposed to

represent actual physical measurements that are affected by significant experimental errors so that

ill conditioning is a true challenge. This ill conditioning problem is solved reducing the number of

unknowns to be determined and reducing in a similar way the number of equations to be solved.

This is obtained exploiting the special features of the linear system (3.3).

Step 2. From the far fields F0(_i,k i,ai) i1 = 1,2,...,N 1 i = 1,2,- .,N to the Herglotz kernel

Let gi,(1) E LV(OB, dA) be the Herglotz kernel associated to the boundary condition (1.5), the

domain D and the wave number k,, E Q,- We assume that gj,(_i) can be appoximated by a

truncated expansion in spherical harmonics, that is:

L, I L, i

=i L 7g 1 tC9 j g,"Vz(~ (3.4)

where 0 < L 2 < Lma, is an integer. Using the orthogonality pr s,, •f the spherical harmonics

the relation (2.16) will be approximated with:

L' I ____ L, I 1
" " .Z 1 g91 1 + F' 1 g'" i = 1,2=..... (3.)•

1=0 M=G - m I 1=1 rn=l ,9''

The equations (3.5) are a linear system of N equations in the (L_ + 1)2 unknown coefficients

{grnI,gIn2}, so that in order to determine the unknowns we need N > (L2 + 1) . We remark that

the unknown coefficients {gtm1 , g1,1',2 } are complex numbers. The number of incoming waves N can

be drastically reduced if the unknown coefficients to be determined are reduced in a corresponding

manner. This reduction can be achieved if we make some a priori assumptions about the symmetries
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of the obstacle D, and we assume than the same symmetry is conserved in the Herglotz kernel gi,(_).

In this paper we consider only two choices:

(i) OD is cylindrically symmetric with respect the z-axis, that is OD = = f(0):_(, 6) I 0 <

9 < r , 0 < 0 < 2-} for some function f. In this case if we assume the same symmetry for

SU wehave 0 if m >0 and g" 2 = 0 for every 1, m so that the linear system (3.5)

has only L. + 1 unknowns and as a consequence we need only N > L. + 1 incoming waves

(ii) OD is cilindrically symmetric with respect to the z-axis and symmetric with respect to the

equator. Arguing as in (i) we can conclude that the linear system (3.5) has only [L-z. +

unknowns. With we have denoted the integer part of L,

When it is necessary the system (3.5) is solved using a regularization procedure. We note that

when it is assumed some symmetry about OD and these symmetries are exploited as previously

shown a large number of the coefficients {Ft•0"n,,, FO } of the system (3.5) determined in Step

1 are multiplied by unknowns 19' 1 Igi 2 } that are assumed zero.

Step 3. From the Herglotz kernel gil(5) to the Herglotz wave function w1 ,il(y), ii =1,2,.-,

From (2.9) and (3.4) an explicit computation gives us an approximated expression of wl,il (y), that

is:

(y = 47r i'ji(k, jyyjj)Ui,(_) + } i'ji(kill1vll)V =(_) (3.6)
I1=0 rn=O i=1 rn=1

where _ = y/yll and ji is the spherical Bessel function of order 1.

Step 4. From the Herglotz functions wtli, (y), ij = 1,2,.-., N1 to the boundary of the obstacle

OD.

For simplicity we assume that there exists 0 < a < b < +co and a smooth function f(0, ) such

that a < f(0, 0) < b, VO, € and we have OD = {(r,0, 0)1 r = f(O, 0), 0 < 0 < -r, 0 < k < 2,%r}.

The reconstruction of the boundary OD from the Herglotz functions is based on the relation (2.8) in

the case of the acoustically soft obstacle, or the relation (2.11) in the case of the acoustically hard

obstacle, or the relation (2.14) in the case of the obstacle characterized by an acoustic impedance.

The relation (2.8) must be interpreted as a nonlinear equation that defines implicitely f as a

function of 9 and 0, the relations (2.11), (2.14), due to the presence of the 0/On term, are nonlinear

expressions involving f, 2Lj, 2 that is first order partial differential equations. So that we expect

that the reconstruction of OD in the acoustically soft case should be easier than in the remaining

cases. In section 4 we will show an ad hoc procedure to exploit (2.8), here we restrict our attention



to a general procedure to obtain OD that can be applied always. We approximate OD with a

truncated series of spherical harmonics:

L,, I LD I

f(1P)= EZ Z l' CimUlm(--D + E E C~m 2 Vill.(X) (3.7)
1=0 r=O--- Im=1

where L, >_ 0 is chosen depending on aD, i.e. simple obstacles can be reconstructed with small

L., that is L, = 4,6. Moreover if it is assumed that 9D has some of the symmetries previously

considered these symmetries can be easily translated into properties of the coefficients {CIml, Cl,,m2},

that is the appropriate coefficients can be chosen zero. Let c = {CIml, C•m2}, 0 < I < Lp, 0 < m < I

be the (L. + 1)2 dimensional real vector of the unknown coefficients, the unknown boundary is

obtained minimizing with respect to c the following functions

S= N 21r dej sin0 W + e i d0 (3.8)
Si=1 k' j J

when the acoustically soft obstacle is considered,

I V 1 " 2 7r ( o ' W .) i + e - ik , f 12 k( 3 9LFI dg) E sinG k 1 )T d(39

when the acoustically hard obstacle is considered,

. 1' 2 7r T0 e-ikif 12
13 (f)= k, dj sinO (1+ X-n)(w3,ij + kf) dO (3.10)

1 1= 10 1 n

when the obstacle with acoustic impedance is considered.

In (3.8), (3.9), (3.10) the Herglotz wave functions obtained in Step 3 are computed in (r =

f(qO),O, q5), A is the normal derivative with respect to the surface r = f(9,O) and f is ap-

proximated with (3.7). The factor •-- in (3.8), (3.9), (3.10) is chosen to make the addenda corre-

sponding to different values of k of the same order of magnitude, finally the integrals appearing in

(3.8), (3.9), (3.10) are approximated by some simple quadrature rule. We observe that the functions

L(g), i = 1,2, 3 are non negative functions and that, if we neglect the effects of the approximations

introduced, the surface r = f(O. ) corresponds to a point where fi(g) i = 1,2,3 is zero, that is

r = f(O, 0) is a global minimizer of I,(c_.). We note that in general the surface OD is only a proper

subset of the set of points satisfying the relations (2.8) or (2.11) or (2.14).

When the minimization of 1i(c) does not give a satisfactory reconstruction of OD we minimize Pi(f)

instead of /i(c), where:

P,(£) = [i(f) + q(!c) i = 1,2,3 (3.11)
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and q(c) is a penalization term. The penalization term q(_c) is chosen as follows

q(_) = E Z i(f(O¢) - j)2 (3.12)
1=l j=1

where pij > 0 are weight factors, fi* are approximated values of f in the direction (09,6j) that

we assume known. For the acoustically soft obstacles the values fj 1 can be obtained solving (2.8)

with 0 = Oi, q j as a nonlinear equation for f. In the remaining cases the nonlinear partial

differential equations (2.11), (2.14) become nonlinear equations when

(9f af
0- =0 (3.13)

For a large class of surfaces (3.13) is satisfied in some special points such as the North Pole (i.e. 0 =

0, 0 arbitrary), the South Pole (i.e. 0 = -,r, (p arbitrary) or the Equator (i.e. 0 = Z, 0 arbitrary).

At these points (2.11), (2.14) can be solved as nonlinear equations to obtain approximate values

fi• of f to be used in the penalization term (3.12).

The minimization of I,(c) or Pj(c) is performed with one of the following three algorithms: DB-

CONF [17], that is a quasi Newton local minimization algorithm, SIGMA [18],[19], that is a global

minimization stochastic algorithm, or DUNLSJ [20], that is a non linear least squares algorithm.

The quasi-Newton algorithm performs only a local minimization but is computationally cheaper

than the global minimization alghorithm. The nonlinear least squares algorithm is specifically

suited for the minimization of 1,(c) i = 1, 2.3.

4- The reconstruction of OD in the acoustically soft case

In section 3 we have observed that (2.8) can be interpreted as a nonlinear equation defining f

implicitely as a function of 0 and ;ý. So that differentiating (2.8) with respect to 0 and 0 we have:

k, +(i+ )-- - + -- =O 0<0<T, 0<p<2r (4.1)

kiwl.i ,,e'•l Of dwt.,

k, -L--+ of+ ) I -+ =0 0<0<7, 0<p<2- (4.2)

Equations (4.1), (4.2) can be interpreted as ordinary diffeiential equations for the unknown f.

We note that, in the reconstruction procedure c.nsidered here, f is not approximated with a

truncated series in spherical harmonics as in (3.7) and that the choice of several values of k (i.e.

ki,I ii = 1,2,.-. NVI) does not play any role. In order to obtain f(9, ¢) we proceed as follows:
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(i) for fixed 0 and 6, let say 0 = 5 = 0, we solve (2.8) as a nonlinear equation. Let /o0 be the

solution found

(ii) given fa0 we solve, for 0 < 9 < it, the differential equation obtained by taking the real part of

(4.1) with the initial condition

f(0, 0) = fa0 (4.3)

Let fo(O, 0) be the solution found. We verify that fo(O, O) satisfies (2.8)

(iii) given fo(O, 0) we solve, for 0 < 6 < 21r, the differential equation obtained by taking the real

part of (4.2) with the initial condition

A(0,0) = fo(MO) (4.4)

Finally we verify that the f(9, 0) obtained in this way satisfies (2.3).

The differential problems considered in (ii), (iii) are initial value problems for scalar differential

equations and are solved numerically using a Runge-Kutta-Fehlberg method (i.e. the subroutine

RKF45 (211).

The problem considered in (iii) is performed only a finite number of times corresponding to a

discretization of the variable 9.

We note that if the obstacle is cylindrically symmetric with respect to the z axis (iii) is not necessary

and the problem is solved after performing (i), (ii). Moreover the differential equations of (iii) for

different values of 9 are independent one from the other and can be solved in parallel. The set

of solutions of (2.8) in general contains the surface f(9, 0) as a subset so that when performing

(i), (ii), (iii) only trajectories that appear to define a closed surface should be considered. Finally

the solution of the inverse problem, based on the differential equations (4.1), (4.2) is limited to the

acoustically soft obstacles and appears 'o be more sensible to error in the data than the minimization

procedure described in section .3. However its computational cost is very small compared to the

minimization procedures previously described.

5. The numerical experience

In this section we describe the numerical results obtained using the numerical methods described

in sections 3 and 4 on several test problems. When we consider the boundary condition (1.7) we

choose X = 1. The surfaces OD considered are the following ones:

2)2 + (2 )•.
3- (Y)' + - = 1 Oblate Ellipsoid (5.1)
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y2  + 2 2( 2
Y2 + (2z)2 = 1 Prolate Ellipsoid (5.2)

2 X) 2 + ( 2 )2)5 + =0 1 Short Cylinder (5.3)

(X2 + Y2)s + (2 Z)10 = 1 Long Cylinder (5.4)

r =2 (cos 2 20+ sin 2 0)3 Vogel's Peanut (5.5)
3 4

r = 1 - I cos 20 Horizontal Platelet (5.6)
1

r = 1 + - cos 29 Vertical Peanut (5.7)

3 17
r 5(- + 2cos30)2 Pseudo Apollo (5.8)

a54( sin8 2• 2 -

"" (, + (2 coss)2) Corrugated Ellipsoid (5.9)
(sin092 2 -

r= ((s)2 + ( cos 0)2) Ellipsoid (5.10)

= 2 O) 10 + cosI° 0) Corrugated Cylinder (5.11)

r f+ H() sin 2 6 Corrugated Platelet (5.12)
2

where

h(¢) 3 cos k)2 + sin 2 0)-j (5.13)
4

H(¢) = (Rh + Ah cos4€ + Bh cos 80 + Ch cos 160) 2  (5.14)

and

Ah 03 fh 0Bh = 0.05.A ; Ch = - h ; Rh=l-(Ah+Bh+Ch) (5.15)
1.34 1.34 1.34

fh is the corrugation parameter. In our numerical experience fh = 0.2. The obstacles D corre-

sponding to (5.1), (5.2), (5.3), (5.4) are convex bodies symmetric with respect to the z-axis and

to the equator, the obstacles corresponding to (5.5), (5.6), (5.7), (5.8) are non convex but they

mantain the symmetry with respect to the z-axis. Finally the obstacles D corresponding to (5.9),

(5.10), (5.11), (5.12) in general are non convex and non symmetric with respect to the z-axis. We

observe that a characteristic length L of the obstacles can be chosen to be one. The Tables 5.1, 5.2,

5.3, 5.4 show some numerical results obtained with the methods described in the previous sections.

In the EL2 and Ea, columns of those tables we use the notation a(/3) to mean a. 10A. Table 5.1

summarizes the results obtained with the obstacles (5.1), (5.2), (5.3), (5.4), Table 5.2 summarizes

the results obtained with the obstacles (5.5), (5.6), (5.7), (5.8), finally Table 5.3 summarizes the

results obtained with the obstacles (5.9), (5.10), (5.11), (5.12).
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We remark that in the reconstructions presented in Table 5.3 the obstacles are considered as general

surfaces, that is there is no use of symmetries in the reconstruction procedure. In Figs. 5.1, 5.2....,5.9

the reconstructions denoted with (*) in the Tables 5.1, 5.2, 5.3 are shown.

Let (0i, Oj) = (i7-j ), i = 1,2....,35 , j = 0, 1, ...,35 and let f(0i, 6,) be the exact values of the

surfaces given by (5.1), (5.2),...,(5.12) and f,(0i,6j) be the corresponding values obtained by the

reconstruction procedure of sections 3 and 4. In the Tables 5.1, 5.2, 5.3, 5.4 we use as performance

index the relative L2 error, that is:

Zj~o/(0• €• - Lo. €))21/2
EL2 = [(f(, 0) - f(O, O))2 + (f(r, 0) - f,(,i 0))2+,),=]

of(-, 0)2 + f(or, 0)2 + Ez 35 3 f(go , O,)2

(5.16)

Table 5.1 Axially symmetric convex obstacles

Lmax = L9 = 8 ; n,2 = A 1 ;Q3 = A2

Recon- Boundar. lReconstruction Penalization tern
Object struction conditionL •k1 k2( method North Pol Equatorj 6 EL2

Oblate Ellipsoid 1 Dirichlet - 3 - RKF45 - - 0.0 0.868(-4)
"2 " - 3 - RKF45 - - 0.05 0.703(-3)

" 3(*) Neumann 4 2 no DBCONF no no 0.0 0.546(-2'
"4(*) " 4 2 n DBCONF no no 0.05 0.880(-2:

"5 Mixed 4 2 n DBCONF no no 0.0 0.365(-2'
" 6 " 42 PnI DBCONF no no 0.05 10.589(-2:

Prolate Ellipsoid 7 Dirichlet - 3 - RKF45 - - 0.0 0.256(-4'
" 8 " - 3 - RKF45 - - 0.05 0.966(-2,
" 9 Neumann 4 2 no DBCONF no no 0.0 0.172(-1l
" 10 ' 4 2 n DBCONF no no 0.05 0.157(-1ý

11 Mixed 4 2 n DBCONF no no 0.0 0.432(-2
"12 1 4 24ni DBCONF no no 0.05 0.869(-2

Short Cylinder 13 Dirichlet - 3 - RKF45 - - 0.0 0.629(-2'
" 14 " - 3 - RKF45 - - 0.05 0.147(-1:

"15 Neumann 6 2 no SIGMA no no 0.0 0.304(-l:
"16 .' 6 2 no SIGMA yes yes 0.05 0.626(-1'
"17(*) Mixed 6 2 n SIGMA yes yes 0.0 0.306(-1

" 18(*) " 6 2jnc SIGMA yes yes 0.05 0.468(-1

Long Cylinder 19(*) Dirichlet - 3 - RKF45 - - 0.0 0.302(-2
20(*) " - 3 - RKF45 -- 0.05 0.369(-2'
"21 Neumann 6 2 3 SIGMA yes yes 0.0 0.543(-1'
"22 " 6 2 3 SIGMA yes yes 0.05 0.482(- 1
"23 Mixed 6 2 n SIGMA yes yes 0.0 0.415(-1'
"24 " 6 2 n SIGMA yes yes 0.05 0.425(-1



or the relative L' error, that is:

max{!f(O, 0) - f,(O, 0)1, If(Tr,O) - f,(r,0)1, lf(oi, oj) - f(Oi,) I 4=0.1 235

Ema = -max{If(0,0)1,If(-,0)t,Ilf(Oi, j)l , `01,.2. (5}

Let us define the sets:

A, = {(0i,0) 1 0i = 10 ) i=0,1,.--,10} (5.18)

A2 = {(0i, 0j) I = i- ,i = 1,-.,9 ; 1. =J- , J = 0, 1,., 8} U {O,01U {r, 0} (5.19)

10 4A 3 ={(0i,€i1) ~ i ,i=1,',7; ¢i=J4~ ,J.=0,1,.".,6}U{O,O}U{7,0,} (5.20)

Table 5.2 Axially symmetric non-convex obstacles

Lma, = L.7 = 8 ; 21 = A1 ; 23 = A2

Recon- Boundar, jReconstruction Penalization term
Object structior conditioniL, kk 2l method North Pol Equator c EL2

Vogel's Peanut 1(*) Dirichlet 4 3 nc SIGMA no no 0.0 0.128(-1)
"2(*) " 4 3 nc SIGMA no no 0.05 0.175(-1)
"3 Neumann 4 2 nc SIGMA no no 0.0 0.596(-1)
"4 ' 4 2 nc SIGMA no no 0.05 0.176(-1)
""5 %Mixed 4 2 n SIGMA no no 0.0 0.273(-l)

""6 1 4 2 nc SIGMA no no 0.05 0.128(-1)

Horizontal Platelet 7 Dirichlet 4 3 nC SIGMA no no 0.0 0.451(-1)
"8 4 3 nc SIGMA no no 0.05 failure
"9 Neumann 4 2 nc SIGMA no no 0.0 0.103(+0)
"10 " 4 2 nC SIGMA no no 0.05 0.202(+0)
"11(*) Mixed 4 2 n SIGMA no no 0.0 0.861(-1)
"12(*) "" 4 2 ni SIGMA no no 0.05 0.156(0)

Vertical Peanut 13 Dirichlet 4 3no SIGMA yes yes 0.0 0.172(-1)
" 14 4 3 no SIGMA yes yes 0.05 failure
"1 5 Neumann 4 2 3 SIGMA no no 0.0 0.725(-1)
" 16 4 2 3 SIGMA no no 0.05 failure
" 17 Mixed 4 2 3 SIGMA no no 0.0 0.649(-1)

13 18 "' 4 2 3 SIGMA no no 0.05 failure
Pseudo Apollo 19 Dirichlet 4 3n SIGMA no no 0.0 0.602(-1)

"20 4 3nd SIGMA no no 0.05 0.114(+0)
"21(*) Neumann 4 2 3 SIGMA yes no 0.0 0.359(-l)
"22(*) " 4 2 3 SIGMA yes no 0.05 0.325(-1)
"23 Mixed 4 2 3 SIGMA yes no 0.0 0.551(-1)

""24 " 1 4 2 3 SIGMA yes no 0.05 0.321(-1)
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In our numerical experience we choose

Ql = A, (5.21)

when the obstacles of Tables 5.1, 5.2 are considered or

Q, = A3  (5.22)

when the obstacles of Table 5.3 are considered. T, et Q2 is either {2}, {3}, or {2, 3} (see Tables).

Finally when the obstacles of Tables 5.1, 5.2 considered !Q is given by A2 and when the obstacles

of Tables 5.3 are considered Q3 is given by A 3 . We observe that with these choices the resonance

condition (1.9) is satisfied. The far field data corresponding to these choices are obtained by solving

numerically the corresponding direct problems that is the boundary value problems (1.3), (1.4),

(1.5) or (1.3), (1.4), (1.6) or (1.3), (1.4), (1.7) using a T-matrix approach (161.

Table 5.3 Generic obstacles

Reconstruction method = "DUNLSJ", without penalization term,

Lmax = L7 = 6 ; LO = 4; k 1 = 2; Q1 = A 3 ; f23 = A3

Object jReconstructionjBoundary condition E EL2
Corrugated Ellipsoid 1 Dirichlet 0.0 0.276(-1)

"2 0.02 0.428(-1)
"3(*) Neumann 0.0 0.287(-1)
"4(*) 0.02 0.417(-1)

"5 Mixed 0.0 0.325(-1)
"6 " 0.02 0.133(+0)

Ellipsoid Dirichlet 0.0 0.291(-1)
" S 0.02 0.296(-1)
"N Neumann 0.0 0.303(-1)

"10 " 0.02 0.308(-1)
"1" Mixed 0.0 0.152(+0)

"__12 "'_ 0.02 0.245(-1)

Corrugated Cylinded 13 Dirichlet 0.0 0.534(-1)
"14 " 0.02 0.652(-1)
"15 Neumann 0.0 0.502(-1)
"16 " 0.02 0.118(+0)
"17(*) Mixed 0.0 0.569(-1)

""18(*) " 0.02 0.675(-1)
Corrugated Platelet 19(-) Dirichlet 0.0 0.663(-1)

"20(*) " 0.02 0.129(+0)
"21 Neun.rinn 0.0 0.105(+0)
22 " 0.02 failure
"23 Mixed 0.0 0.65.1(-1)
"24 " _ 0.02 0.175(+0)
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Table 5.4 Performance as a function of E

Object: Long Cylinder; Boundary condition: Dirichlet;

Lmax=L2=8; LP=6;k, =3; Q1 =A 1 A Q3 =A 3

Reconstruction method= "SIGMA" without penalization term.

Reconstruction E[ E,,. EL2

1 10 .01  0.611(-1) 0.286(-l)
2 10.05 0614(-1) 0.294(-l)

3 0.l( 0.587(-1) 0.298(-1)
4 10.20 0.525(-1) 0.398(-1)
5 0.3c4 0.865(-l) 0.548(-1)
6 0.4q4 0.109(+0) 0.655(-1)

7 0.50. 0.123(+0) 0.714(-1)

s J0.60 0.131(+0) 0.752(-1)

To the data Fi,i,j Fo(_j, ki ,_ai) is added a random error term, that is Fi,i,,j is substituted with

,,j= Fi, + E(JFi,i,,j (5.23)

where e > 0 is a parameter and ý is a random number uniformly distributed in [-1, 1].

In our numerical experience we have L.,m, = L? = 6 or 8, LP = 4 or 6 (see Tables). Finally in

Table 5.4 we show the performance of our algorithms for increasing values of c in the case of the

acoustically soft long cylinder. The method based on the global minimization algorithm SIGMA

appears to be the most powerful one at the price of higher computational cost. The computations

previously described have been performed on a VAX 6310 with VMS Operating System.
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ORIGINAL RECONSTRUCTION 19 RECONSTRUCTION 20

of table 5.1 of table 5.1

Fig. 5.1 Long Cylinder

ORIGINAL RECONSTRUCTION 3 RECONSTRUCTION 4

of table 5.1 of table 5.1

Fig. 5.2 Oblate Ellipsoid

ORIGINAL RECONSTRUCTION 17 RECONSTRUCTION 18

of table 5.1 of table 5.1

Fig. 5.3 Short Cylinder
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ORIGINAL RECONSTRUCTION I RECONSTRUCTION 2
of table 5.2 of table 5.2

Fig. 5.4 Vogel's Peanut

ORIGINAL RECONSTRUCTION 21 RECONSTRUCTION 22
of table 5.2 of table 5.2

Fig. 5.5 Pseudo Apollo

ORIGINAL RECONSTRUCTION 11 RECONSTRUCTION 12
of table 5.2 of table 5.2

Fig. 5.6 Horizonti Platelet
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ORIGINAL RECONSTRUCTION 19 RECONSTRUCTION 20

of table 5.3 of table 5.3

Fig. 5.7 Corrugated Platelet

ORIGINAL RECONSTRUCTION 3 RECONSTRUCTION 4

of table 5.3 of table 5.3

Fig. 5.8 Corrugated Ellipsoid

ORIGINAL RECONSTRUCTION 17 RECONSTRUCTION 18

of table 5.3 of table 5.3

Fig. 5.9 Corrugated Cylinder
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electromagnetic inverse scattering in the resonance regiont
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Abstract
A numerical method for the three dimensional inverse acoustic and electromagnetic

time harmonic scattering problem is presented. The far field patterns of the Helmholtz
or vector Helmholtz equations generated by a known wave incident on an obstacle D are
measured. These measurements are repeated for several incoming waves. From these
measurements the boundary aD of the obstacle is reconstructed. The reconstruction
procedure proposed here generalizes the "Herglotz function method" introduced by
Colton and Monk [11 in the acoustic problem and is effective in the so called resonance
region.

1. INTRODUCTION

Let R` be the three dimensional euclidean space, z = (X, Y, z) E R' be a generic
vector, (.,.) will denote the euclidean scalar product and J1.11 the euclidean norm. Let
D C R' be a bounded simply connected domain with smooth boundary 8D that
contains the origin. Let u'() be an incoming acoustic plane wave, that is:

u'(_) = eik(-'-) (1.1)

where k > 0 is the wave number and la E R' is a fixed unit vector. Let us dcnote with
ut(z) the acoustic field scattered by the obstacle D and with u(j) the total acoustic
field, that is:

The research reported in this paper has been made possible through the support and sponsorship of the Italian

Government through the Ministero per l'Universiti e per I& Ricerca Scientifica under contract MURST 40%

1990 and of the U. S. Government through the Air Force Office of Scientific Research under contract n.

AFOSR 90-0226

41



336

U) = u'(z) + U'(X) (1.2)

The total acoustic field u(_) satisfies the Helmhoitz equation:

Au+k 2u =0 in R 3\D (1.3)

and the scattered acoustic field u'(x) satisfies the Sommerfeld radiation condition at
irinnity, that is:

lim ;1I ,-f -Z kiu') = 0 (1.4)
*LJJ ý -5 -T 11

82 82 8

where L = -+ + is the Laplace operator. Moreover the total acoustic field
u(_) satisfies a boundary condition on OD. This boundary condition can be formulated
in several different ways, depending on the nature of the obstacle D.
In [21,[31,(41 we have considered the acouistically soft obstacles that are characterized by
the Dirichlet boundary condition:

u = 0 on OD (1.5)

In [4],[51 we have considered the acoustically hard obstacles characterized by the
Neumann boundary condition

au
T- = 0 on 9D (1.6)

where v is the unit normal on 4D, and the obstacles characterized by an acoustic
impedance that satisfy the mixed boundary condition

u + X-V = on aD (1.7)

We assume that X is a given constant. We consider three boundary value problems: the
Dirichiet boundary value problem given by (1.3),(1.4),(1.5), the Neumann boundary
value problem gi 'en by (1.3), (1.4),(1.6) and the mixed boundary value problem given
by (1.3), (1.4),(1.7). In [61 it is shown that the scattered field u-'(_x) of the DiricHc!et, the
Neumann and mixed boundary value problem has the following expansion

eiktztl'•{
u'(1) = -,F-(,k,t)-+ 0( when jjix - oo (1.8)

where i = x z # 0 and Fo(i, k, a) is the far field pattern generated by the incoming-- 1 { -= l --
wave (1.1) that hits the obstacle D.
In (21,[31,[41,(5j we have introduced a numerical method for an inverse problem for the
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three dimensional Helmholtz equation, that is from the knowledge of the nature of the
obstacle i.e. the boundary condition on OD satisfied by u(z) and from the far fields F.
generated by several incoming waves we want to recover the shape of the obstacle 3D.
To be more precise let A, , n = 1, 2, ... be the eigenvalues of the Laplace operator in
the interior of D, with Dirichlet boundary condition (1.5) or with Neumann boundary
condition (1.6) or with the mixed boundary condition (1.7); let B = {z E R 3  W < Ii,

and QB be the boundary of B. We will consider the following inverse problem:

Problem 1.1 Inverse aconstzc prob1-m. Let us assume that u(z) satisfies the Dirichlet
boundary condition (1.5) or the Neumann boundary condition (1.6) or the mixed
boundary condition (1.7). Let fQ1 C 3B , Q22 C {• E R I c > 0} be two given sets
such that A, Q, i = 1,2... From the knowledge of Fo(,', k, a), for s E , E Q2
detcrmine the boundary of the obstacle OD.

We note that the condition A, 4 Q2 i = 1, 2... is a non-resonance condition, that QlI is
the set of the directions of the incoming waves and that the far field Fo is observed for
zi E 8B. Let us now consider the electromagnetic problem. For time harmonic waves
the Maxwell equations are reduced to the time harmonic Maxwell equations [63 (see
chapter 4).
In the following we will use occasionally complex vectors abusing of the notations.
Let E'(z) be the electric field associated to a linearly polarized time harmonic incoming
wave propagating in an homogeneous isotropic medium, that is:

E.(z) = we .E','- (1.9)

where __w,a E R3 with 1Il 1 are given and k > 0 is the wave number, moreover we
assume that:

divE.() ik(w,j_.)eik(z.=) = 0 (1.10)

where E'(1) = (E' (I), E,(), E'(1)) and divE'(z) = - "' +.- +_ ,. ). We

note that w is the polarization vector and a is the propagation direction of the incomig
electric lield. We note that the magnetic field H'1(1) associated to this incoming wave
is given by:

H'(1) curE()(1.)

where curIE'(1)= (o OF _ a _ ax a_ , at a,

Let us denote with E`(z) the electric field scattered by the obstacle D when hitted by
the incoming wave E'(z) and with

E(j) = E'(j_) + E"(_z) (1.12)

the total electric field. It is ,,,sv -o -ee '61 (see chapter 4) that the time harmonic Maxwell
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equations in an homogeneous isotropic medium that does not contain electric charge
reduce to the vector Helmholtz equation, so that the scattered field E'(_) satisfies:

AE'(1) + V2 E'(x) = _0 in R 3 \ D (1.13)

together with the equation:

divE'(z) = 0 in R-1 \ D (1.14)

while the Silver-Mailter radiation condition at infinity [6] (see paragraph 4.2) reduces to:

curE'(_) x i - ikE'(_) =(o ), oi 00o (1.15)

where x is the vector product. Let _I(z) be the exterior unit normal to 8D, for a
perfectly conducting obstacle D, we will assume the following boundary condition:

E(_)x v(z.)=O , zEOD (1.16)

In [61 it is shown that E3 (z), solution of the boundary value problem (1.13), (1.14),
(1.15), (1.16) has the following expansion:

" A= Eo(i, ko, w) + ( , _ii -- (1.17)

where E 0(_i, k,_a,_w) is the (electric) far field pattern generated by the incoming wave
(1.9) that hits the obstacle D.

In (71 we introduce a numerical method for an inverse problem for the three dimensional
vector Helmholtz equation (1.13). That is, from the knowledge of the nature of the
obstacle (i.e. the fact that the obstacle is perfectly conducting) and from the (electric)
far fields E0 (i, k,_a,w,) generated by several (known) incoming waves we want to
recover the shape of the obstacle OD.

To be more precise let A,, n = 1,2,... be the eigenvalues of the "vector" Laplace
operator restricted to the divergence free vector fields with the homogeneous boundary
condition (1.16) in the interior of D. In [7] we have considered the following inverse
problem:

Problem 1.2 Invere electromagnetic problem. Let !fl _ 8B , S C R3 , f2, C R be
three given sets such that \, 4 ft3 i = 1,2,... and let Eo(i, k, a, w be the (electric)

far field defined in (1.171. From the knowledge of E0(_i, k,_o,_w.) for•a E ýl2 i, ig. E ý1z,

-k 2 E fl determine the boundary of the obstacle 3D.

We note that the condit:on 4, Q, z = 1, 2.... is a non resonance condition, that 2I is

the set of the directions of -he incoming waves and that n22 is the set of the polarization
vectors of the incomig .vas
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The inverse Problems 1.1, 12 have been studied generalizing the "Herglocz function
method" introduced by C, -on and Monk [11. This technique is supposed to be
particularly effective in the resonance region, that is, when

kL_1 (18)

where L is a characteristic length of the obstacle D.
In section 2 we deveiop the mathematical relations needed to develop our procedure and
%,e outline the numerical method derived from them. Finally in section 3 we present
some numerical results.

2. THE MATHEMATICAL FORMULATION OF THE INVERSE

PROBLEM

We will restrict our attention here to the inverse Problem 1.1 associated to the
Dirichlet boundary value problem (1.3),(1.4),(1.5). The remaining inverse problems are
treated in a similar way and we refer to (31,[41,[51J71.
For x, y E R3 let

cN(klls - YII) = IIl- (2.1)

be the Green's function of the Helmholtz operator with the Sommerfe'd radiation
condition at infinity. It is easy to see that:

¢,(kII_ - DII) = e- - + lI -1 oo (2.2)

moreover from the Helmholtz formula [61 we have:

P~I~t~aI Ou(Y) (y = -u'x ifr (2.3)
4r ,( L) , 9,(y),, { 'u(z) if ER' D

where da, (y) is the surface measure on 8D.
Substituting (2.2) in (2.3) and using (1.8) we have:

!a e-'1k-i'-) Ou(y) _k ,)
- e(y_) O-•y4, 8 ~iy) - --( kA)do',(y) (2.4)ro( ., k, a_) a (2.4)

Let g(_.) E L2 (aB,da 2 ) where L2 (aB, dao2 ) is the space of square integrable functions
with respect to the surface measure on the unit sphere da 2 and g(_i) is the complex

conjugate of g(j).
For every g(i) E L2(aB, da 2 ) from (2.4) interchanging the integrals we have:
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JaBF<,i, k, a) , l .1 d) 2 (_)gt.

L Y-,.y) e-lk ))da (y) (2.5)
a D ,, Z) ( • -- <o() I2.5I

1 f av(ky) ou(y)
= 4,TJa o v(y) ) -v(ky))do'(y)

where

v(ky) = j g(C'k (I- 'A -) (i) (2.6)

It is easy to see that v(ky) satisfies the Helmholtz equation for y E R', moreover v(ky)
is the Herglotz wave function corresponding to the Herglotz kernel g(i). Since the total
acoustic field u satisfies the boundary condition (1.5) on the surface aD formula (2.5)
reduces to:

_t L k _ . , (Y kL ) d v ,( Y ) ( 2 .7 )

We restrict our attention to the Dirichlet Herglotz domains, that is domains such that
the unique solution v of:

(+k 2 )v = 0 z E D (2.8)

v E OD (2.9)

is given by (2.6) for a suitable choice 9H(_, k) of g(_i)
We note that in the definition of Hcrglotz domains we have exploited the hypothesis
-k' 94 Ai i = 1,2,.- A simple computation shows that the sphere with center the
origin is an Herglotz domain that is the class of the Herglotz domains is not empty. In
(2.7), let v be the Herglotz wave function associated to gHi(_, k), using (2.9) and the
Helmholtz formula (2.3) we have:

(= (2.10)

when g,(.i, k) is the Herglotz kernel, formula (2.10) holds Vk, a. Problem 1.1 proposed
in section I will be solved in three steps:

(i) from the knowledge of some far fields F0 using (2.10) determine the Herglotz kernel

gH(i, k) of the domain D
(ii) from gH(_, k) using (2.6) find the corresponding Herglotz wave function u
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(iii) determine aD using (2.9)
The steps (i),(ii),(iii) are performed with a fixed k, however when necessary sevPrai (two
or three) values of k can be used [41,[5j.
The numerical method that exploits the previously described reconstruction procedure
consists of some linear algebra computations to perform step (i), explicit analytic
computation to perform step (ii), a global minimization procedure to perform step
(iii). The global minimization algorithm used is based on the numerical integration of
a system of stochastic differential equations [914101. Further details are contained in
[21,[31,441!,[5J,7.

3. NUMERICAL RESULTS

The surfaces r9D considered are the following ones:

1- Oblate Ellipsoid (2z)1 + (•y) 2 - z2 
= 1 (3.1)

2- Prolate Ellipsoid X2 + y2 + (2z) 2 = 1 (3.2)
3- Vogel's Peanut r = I(cos2 0 + 1 sin2 9)1/2 (3.3)

4- Short Cylinder ((2X32 + (2y) 2 )5 + = 1 (3.4)

5- Pseudo Apollo r = (1-7 + 2cos 30)1 (3.5)

All these surfaces are cylindri-ally symmetric with respect to the z-axis and the surfaces
1,2,3,4 are also symmetric with respect to the equator.

We observe that the obstacles D corresponding to 1,2,4 are convex and the ones
corresponding to 3,5 are not convex. Finally a characteristic length L of the obstacles
can be chosen equal 1.

Let (r,0, ) be polar cohordinates and _ = (sin cos , sin9sin4, cos9), 8D = r=

f(8, 0) 10!< -r 0 q < 27r Iforj = 0, 1 ... 36 letOi 9 ,-. f(i,0) be the exactS• • • 36•

values of the surfaces given by (3.1),...,(3.5) and fc(0j,0) be the values reconstructed

performing the numerical procedure described in section 2. The relative L' error in the
points {(8,,0) I J =0,1,...36}, that is:

T- (f(0j,0) - M(op,0)) 2

EL2 = - 6 -- -- (3.6)

J=O

is used as a performance index.

In the results shown below we use 9-11 different directions for the incoming waves and
in the case of the electromagnetic problem two linearly independent polarizations for
each incoming direction. The far fields are obtained from the numerical solution of
the corresponding boundary value problems. That is, for example, for the acoustic
Dirichlet inverse problem the boundary value problem (1.3),(1.4),(1.5). A random error
of order 1%-5% is added to the numerically computed far fields in order to simulate
actual measurements. The far fields are supposed to be known on the full solid angle
(complete data) or only on a finite set (9-11) directions (incomplete data).
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The resuits obtained with our reconstruction procedure are ,vn in tables 3.1, 3.2,
3.3, 3.4.

Table 3.1
Acoustic Dirichlet inverse problem

Object k I `-ber o. ,oJ(nmpiete EL,2

Oblate Ellipsoidl 3 9 1 no 0.0071
'Proiate Ellipsoid 3 1 9 I no 10.031

Vogel's Peanut 3 i 9 yes 0.019

Short Cylinder 3 9 i no 0.0091
Pseudo ApoiloII 9 _ yes 0.062

Table 3.2
Acoustic Neumann inverse problem

Object k umbero .-ompetea ELI

Oblate Ellipsoidj 3 1 9 1 no 0.007c
Prolate Ellipsoid 3 9 J no 0.013ý
Vogel's Peanut 3 9 no 0.046,
Short Cylinder 2  9 yes 0.047
Pseudo Apollo 12-3 9 yes 0.035

Table 3.3
Acoustic Mixed inverse problem (X = 1)

Object Itk co-ming .( Compieta EL 1____________ ncominf wAaves data t

Oblate Ellipsoidl 4 9 yes 0.0023
Prolate Ellipsoid 4 9 yes 0.017

Vogel's Peanut 3 9 no 0.027
Short Cylinder 3 9 yes 0.014
Pseudo Apollo 2-31 9 yes 0.036

Table 3.4
Electromagnetic inverse problem

Object k Ncmien o&T op data ELI
Oblate Ellipsoid! 3 18 yes 0.0304

Prolate Ellipsoij 3j 18 yes 0.0322
Vogel's Peanut 3 18 yes 10.0264

Short Cylinder 2.5 1 22 yes 0.0521
Pseudo Apollo 1 4 22 yes 0.0411

As an example in the f9gires I and 2 the quality of our reconstructions is shown.
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ORIGINAL RECONSTRUCTED

fig. 1

Short Cylinder Reconstruction of Table 3.1

ORIGINAL RECONSTRUCTED

31!,

fig. 2

Pseudo Apollo Reconstruction of Table 3.4
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